o
    iS                     @   sN  d Z ddlZddlmZmZ ddlmZ ddlmZ ddl	m
Z
mZmZ ddlmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZmZmZmZ dd	lm Z m!Z!m"Z"m#Z# dd
l$m%Z%m&Z&m'Z'm(Z(m)Z) ddlm*Z*m+Z+m,Z, ddl-m.Z. g dZ/e0 Z1ze2dd W n e3y   e2Z4Y nw ee2ddZ4zddlm5Z6 W n e7y   dd Z6Y nw z
ddlm8Z8m9Z9 W n e7y   dZ:Y nw dZ:dd Z;dddZ<dd Z=dddZ>dddZ?ddd Z@eAfd!d"ZBd#d$ ZCeCZDd%d& ZEd'd( ZFd)d* ZGdd+d,ZHd-d. ZIzdd/lmJZK W n e7y   eIZJY n	w d0d1 ZJeIj eJ_ G d2d3 d3eLZMd4d5 ZNd6d7 ZOdd9d:ZPd;d< ZQd=d> ZRd?d@ ZSddAdBZTddCdDZUddEdFZVddGdHZWddIdJZXdKdLdMdNZYddOdPZZdQdR Z[dSdT Z\dUdV Z]dWdX Z^dYdZ Z_d[d\ Z`d]d^ Zad_d` Zbdadb Zcdcdd Zddedf Zedgdh ZfddidjZgdkdl ZhdddmdnZie.dokrddplmjZk dddqdrZjeij ej_ neiZjdsdt ZlemenffdudvZodwdx Zpdydz Zqd{d| Zrd}d~ ZsetehdZudd Zvdd Zwdd Zxdd Zydd Zzg dZ{e
dd Z|dd Z}e~ j*Zdd Zdd Zdd Zdd Zdd Zdd ZddddZdS )a  Imported from the recipes section of the itertools documentation.

All functions taken from the recipes section of the itertools library docs
[1]_.
Some backward-compatible usability improvements have been made.

.. [1] http://docs.python.org/library/itertools.html#recipes

    N)bisect_leftinsort)dequesuppress)	lru_cachepartialreduce)heappushheappushpop)
accumulatechaincombinationscompresscountcyclegroupbyisliceproductrepeatstarmap	takewhileteezip_longest)prodcombisqrtgcd)mulnot_
itemgettergetitemindex)	randrangesamplechoice)
hexversion)2	all_equalbatchedbefore_and_afterconsumeconvolve
dotproduct
first_truefactorflattengrouperis_primeiter_except
iter_indexloopsmatmulmultinomialncyclesnthnth_combinationpadnonepad_nonepairwise	partitionpolynomial_evalpolynomial_from_rootspolynomial_derivativepowersetprependquantifyreshape#random_combination_with_replacementrandom_combinationrandom_permutationrandom_product
repeatfunc
roundrobinrunning_mediansievesliding_window	subslicessum_of_squarestabulatetailtaketotient	transpose
triplewiseuniqueunique_everseenunique_justseenTstrict)sumprodc                 C   s
   t | |S N)r,   )xy r_   \/var/www/html/karishye-ai-python/venv/lib/python3.10/site-packages/more_itertools/recipes.py<lambda>l   s   
 ra   )heappush_maxheappushpop_maxFc                 C      t t|| S )zReturn first *n* items of the *iterable* as a list.

        >>> take(3, range(10))
        [0, 1, 2]

    If there are fewer than *n* items in the iterable, all of them are
    returned.

        >>> take(10, range(3))
        [0, 1, 2]

    )listr   )niterabler_   r_   r`   rR   x   s   rR   c                 C   s   t | t|S )a  Return an iterator over the results of ``func(start)``,
    ``func(start + 1)``, ``func(start + 2)``...

    *func* should be a function that accepts one integer argument.

    If *start* is not specified it defaults to 0. It will be incremented each
    time the iterator is advanced.

        >>> square = lambda x: x ** 2
        >>> iterator = tabulate(square, -3)
        >>> take(4, iterator)
        [9, 4, 1, 0]

    )mapr   )functionstartr_   r_   r`   rP      s   rP   c                 C   sF   zt |}W n ty   tt|| d Y S w t|td||  dS )zReturn an iterator over the last *n* items of *iterable*.

    >>> t = tail(3, 'ABCDEFG')
    >>> list(t)
    ['E', 'F', 'G']

    maxlenr   N)len	TypeErroriterr   r   max)rf   rg   sizer_   r_   r`   rQ      s   rQ   c                 C   s.   |du rt | dd dS tt| ||d dS )aX  Advance *iterable* by *n* steps. If *n* is ``None``, consume it
    entirely.

    Efficiently exhausts an iterator without returning values. Defaults to
    consuming the whole iterator, but an optional second argument may be
    provided to limit consumption.

        >>> i = (x for x in range(10))
        >>> next(i)
        0
        >>> consume(i, 3)
        >>> next(i)
        4
        >>> consume(i)
        >>> next(i)
        Traceback (most recent call last):
          File "<stdin>", line 1, in <module>
        StopIteration

    If the iterator has fewer items remaining than the provided limit, the
    whole iterator will be consumed.

        >>> i = (x for x in range(3))
        >>> consume(i, 5)
        >>> next(i)
        Traceback (most recent call last):
          File "<stdin>", line 1, in <module>
        StopIteration

    Nr   rk   )r   nextr   )iteratorrf   r_   r_   r`   r*      s    r*   c                 C   s   t t| |d|S )zReturns the nth item or a default value.

    >>> l = range(10)
    >>> nth(l, 3)
    3
    >>> nth(l, 20, "zebra")
    'zebra'

    N)rr   r   )rg   rf   defaultr_   r_   r`   r8      s   
r8   c                 C   s,   t | |}|D ]}|D ]}  dS  dS dS )a  
    Returns ``True`` if all the elements are equal to each other.

        >>> all_equal('aaaa')
        True
        >>> all_equal('aaab')
        False

    A function that accepts a single argument and returns a transformed version
    of each input item can be specified with *key*:

        >>> all_equal('AaaA', key=str.casefold)
        True
        >>> all_equal([1, 2, 3], key=lambda x: x < 10)
        True

    FT)r   )rg   keyrs   firstsecondr_   r_   r`   r'      s   
r'   c                 C   rd   )zcReturn the how many times the predicate is true.

    >>> quantify([True, False, True])
    2

    )sumrh   )rg   predr_   r_   r`   rC      s   rC   c                 C   s   t | tdS )a   Returns the sequence of elements and then returns ``None`` indefinitely.

        >>> take(5, pad_none(range(3)))
        [0, 1, 2, None, None]

    Useful for emulating the behavior of the built-in :func:`map` function.

    See also :func:`padded`.

    N)r   r   rg   r_   r_   r`   r;     s   r;   c                 C   s   t tt| |S )zvReturns the sequence elements *n* times

    >>> list(ncycles(["a", "b"], 3))
    ['a', 'b', 'a', 'b', 'a', 'b']

    )r   from_iterabler   tuplerg   rf   r_   r_   r`   r7     s   r7   c                 C   s   t tt| |S )zReturns the dot product of the two iterables.

    >>> dotproduct([10, 15, 12], [0.65, 0.80, 1.25])
    33.5
    >>> 10 * 0.65 + 15 * 0.80 + 12 * 1.25
    33.5

    In Python 3.12 and later, use ``math.sumprod()`` instead.
    )rx   rh   r   )vec1vec2r_   r_   r`   r,     s   
r,   c                 C   s
   t | S )zReturn an iterator flattening one level of nesting in a list of lists.

        >>> list(flatten([[0, 1], [2, 3]]))
        [0, 1, 2, 3]

    See also :func:`collapse`, which can flatten multiple levels of nesting.

    )r   r{   )listOfListsr_   r_   r`   r/   +  s   
	r/   c                 G   s&   |du rt | t|S t | t||S )aG  Call *func* with *args* repeatedly, returning an iterable over the
    results.

    If *times* is specified, the iterable will terminate after that many
    repetitions:

        >>> from operator import add
        >>> times = 4
        >>> args = 3, 5
        >>> list(repeatfunc(add, times, *args))
        [8, 8, 8, 8]

    If *times* is ``None`` the iterable will not terminate:

        >>> from random import randrange
        >>> times = None
        >>> args = 1, 11
        >>> take(6, repeatfunc(randrange, times, *args))  # doctest:+SKIP
        [2, 4, 8, 1, 8, 4]

    N)r   r   )functimesargsr_   r_   r`   rI   7  s   rI   c                 C   s    t | \}}t|d t||S )zReturns an iterator of paired items, overlapping, from the original

    >>> take(4, pairwise(count()))
    [(0, 1), (1, 2), (2, 3), (3, 4)]

    On Python 3.10 and above, this is an alias for :func:`itertools.pairwise`.

    Nr   rr   zip)rg   abr_   r_   r`   	_pairwiseR  s   	

r   )r<   c                 C   s   t | S r\   )itertools_pairwiserz   r_   r_   r`   r<   f  s   r<   c                       s   e Zd Zd fdd	Z  ZS )UnequalIterablesErrorNc                    s*   d}|d ur|dj | 7 }t | d S )Nz Iterables have different lengthsz/: index 0 has length {}; index {} has length {})formatsuper__init__)selfdetailsmsg	__class__r_   r`   r   m  s   zUnequalIterablesError.__init__r\   )__name__
__module____qualname__r   __classcell__r_   r_   r   r`   r   l  s    r   c                 c   s8    t | dtiD ]}|D ]	}|tu rt q|V  qd S )N	fillvalue)r   _markerr   )	iterablescombovalr_   r_   r`   _zip_equal_generatorw  s   r   c                  G   sn   z)t | d }t| dd  dD ]\}}t |}||kr$t|||fdqt|  W S  ty6   t|  Y S w )Nr      )r   )rm   	enumerater   r   rn   r   )r   
first_sizeiitrq   r_   r_   r`   
_zip_equal  s   
r   fillc                 C   sL   t | g| }|dkrt|d|iS |dkrt| S |dkr"t| S td)a  Group elements from *iterable* into fixed-length groups of length *n*.

    >>> list(grouper('ABCDEF', 3))
    [('A', 'B', 'C'), ('D', 'E', 'F')]

    The keyword arguments *incomplete* and *fillvalue* control what happens for
    iterables whose length is not a multiple of *n*.

    When *incomplete* is `'fill'`, the last group will contain instances of
    *fillvalue*.

    >>> list(grouper('ABCDEFG', 3, incomplete='fill', fillvalue='x'))
    [('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')]

    When *incomplete* is `'ignore'`, the last group will not be emitted.

    >>> list(grouper('ABCDEFG', 3, incomplete='ignore', fillvalue='x'))
    [('A', 'B', 'C'), ('D', 'E', 'F')]

    When *incomplete* is `'strict'`, a subclass of `ValueError` will be raised.

    >>> iterator = grouper('ABCDEFG', 3, incomplete='strict')
    >>> list(iterator)  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
    ...
    UnequalIterablesError

    r   r   rZ   ignorez Expected fill, strict, or ignore)ro   r   r   r   
ValueError)rg   rf   
incompleter   	iteratorsr_   r_   r`   r0     s   r0   c                  g   sD    t t| }tt| ddD ]}tt||}t t|E dH  qdS )aG  Visit input iterables in a cycle until each is exhausted.

        >>> list(roundrobin('ABC', 'D', 'EF'))
        ['A', 'D', 'E', 'B', 'F', 'C']

    This function produces the same output as :func:`interleave_longest`, but
    may perform better for some inputs (in particular when the number of
    iterables is small).

    r   N)rh   ro   rangerm   r   r   rr   )r   r   
num_activer_   r_   r`   rJ     s   
rJ   c                 C   sH   | du rt } t|d\}}}tt| |\}}t|tt|t||fS )a  
    Returns a 2-tuple of iterables derived from the input iterable.
    The first yields the items that have ``pred(item) == False``.
    The second yields the items that have ``pred(item) == True``.

        >>> is_odd = lambda x: x % 2 != 0
        >>> iterable = range(10)
        >>> even_items, odd_items = partition(is_odd, iterable)
        >>> list(even_items), list(odd_items)
        ([0, 2, 4, 6, 8], [1, 3, 5, 7, 9])

    If *pred* is None, :func:`bool` is used.

        >>> iterable = [0, 1, False, True, '', ' ']
        >>> false_items, true_items = partition(None, iterable)
        >>> list(false_items), list(true_items)
        ([0, False, ''], [1, True, ' '])

    N   )boolr   rh   r   r   )ry   rg   t1t2pp1p2r_   r_   r`   r=     s
   r=   c                    s,   t |  t fddtt d D S )a1  Yields all possible subsets of the iterable.

        >>> list(powerset([1, 2, 3]))
        [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

    :func:`powerset` will operate on iterables that aren't :class:`set`
    instances, so repeated elements in the input will produce repeated elements
    in the output.

        >>> seq = [1, 1, 0]
        >>> list(powerset(seq))
        [(), (1,), (1,), (0,), (1, 1), (1, 0), (1, 0), (1, 1, 0)]

    For a variant that efficiently yields actual :class:`set` instances, see
    :func:`powerset_of_sets`.
    c                 3       | ]}t  |V  qd S r\   )r   ).0rsr_   r`   	<genexpr>      zpowerset.<locals>.<genexpr>r   )re   r   r{   r   rm   rz   r_   r   r`   rA     s   $rA   c           	   	   c   s    t  }|j}g }|j}|du}| D ]+}|r||n|}z||vr(|| |V  W q ty=   ||vr;|| |V  Y qw dS )a  
    Yield unique elements, preserving order.

        >>> list(unique_everseen('AAAABBBCCDAABBB'))
        ['A', 'B', 'C', 'D']
        >>> list(unique_everseen('ABBCcAD', str.lower))
        ['A', 'B', 'C', 'D']

    Sequences with a mix of hashable and unhashable items can be used.
    The function will be slower (i.e., `O(n^2)`) for unhashable items.

    Remember that ``list`` objects are unhashable - you can use the *key*
    parameter to transform the list to a tuple (which is hashable) to
    avoid a slowdown.

        >>> iterable = ([1, 2], [2, 3], [1, 2])
        >>> list(unique_everseen(iterable))  # Slow
        [[1, 2], [2, 3]]
        >>> list(unique_everseen(iterable, key=tuple))  # Faster
        [[1, 2], [2, 3]]

    Similarly, you may want to convert unhashable ``set`` objects with
    ``key=frozenset``. For ``dict`` objects,
    ``key=lambda x: frozenset(x.items())`` can be used.

    N)setaddappendrn   )	rg   ru   seensetseenset_addseenlistseenlist_adduse_keyelementkr_   r_   r`   rW     s(   rW   c                 C   s4   |du rt tdt| S t tt tdt| |S )zYields elements in order, ignoring serial duplicates

    >>> list(unique_justseen('AAAABBBCCDAABBB'))
    ['A', 'B', 'C', 'D', 'A', 'B']
    >>> list(unique_justseen('ABBCcAD', str.lower))
    ['A', 'B', 'C', 'A', 'D']

    Nr   r   )rh   r    r   rr   )rg   ru   r_   r_   r`   rX   '  s   	rX   c                 C   s   t | ||d}t||dS )a  Yields unique elements in sorted order.

    >>> list(unique([[1, 2], [3, 4], [1, 2]]))
    [[1, 2], [3, 4]]

    *key* and *reverse* are passed to :func:`sorted`.

    >>> list(unique('ABBcCAD', str.casefold))
    ['A', 'B', 'c', 'D']
    >>> list(unique('ABBcCAD', str.casefold, reverse=True))
    ['D', 'c', 'B', 'A']

    The elements in *iterable* need not be hashable, but they must be
    comparable for sorting to work.
    )ru   reverse)ru   )sortedrX   )rg   ru   r   	sequencedr_   r_   r`   rV   6  s   rV   c                 c   s<    t | |dur| V  	 |  V  q1 sw   Y  dS )a  Yields results from a function repeatedly until an exception is raised.

    Converts a call-until-exception interface to an iterator interface.
    Like ``iter(func, sentinel)``, but uses an exception instead of a sentinel
    to end the loop.

        >>> l = [0, 1, 2]
        >>> list(iter_except(l.pop, IndexError))
        [2, 1, 0]

    Multiple exceptions can be specified as a stopping condition:

        >>> l = [1, 2, 3, '...', 4, 5, 6]
        >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
        [7, 6, 5]
        >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
        [4, 3, 2]
        >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
        []

    Nr   )r   	exceptionrv   r_   r_   r`   r2   J  s   
r2   c                 C   s   t t|| |S )a  
    Returns the first true value in the iterable.

    If no true value is found, returns *default*

    If *pred* is not None, returns the first item for which
    ``pred(item) == True`` .

        >>> first_true(range(10))
        1
        >>> first_true(range(10), pred=lambda x: x > 5)
        6
        >>> first_true(range(10), default='missing', pred=lambda x: x > 9)
        'missing'

    )rr   filter)rg   rt   ry   r_   r_   r`   r-   g  s   r-   r   r   c                 G   s$   dd |D |  }t dd |D S )a  Draw an item at random from each of the input iterables.

        >>> random_product('abc', range(4), 'XYZ')  # doctest:+SKIP
        ('c', 3, 'Z')

    If *repeat* is provided as a keyword argument, that many items will be
    drawn from each iterable.

        >>> random_product('abcd', range(4), repeat=2)  # doctest:+SKIP
        ('a', 2, 'd', 3)

    This equivalent to taking a random selection from
    ``itertools.product(*args, repeat=repeat)``.

    c                 S   s   g | ]}t |qS r_   r|   r   poolr_   r_   r`   
<listcomp>  s    z"random_product.<locals>.<listcomp>c                 s   s    | ]}t |V  qd S r\   )r%   r   r_   r_   r`   r         z!random_product.<locals>.<genexpr>r   )r   r   poolsr_   r_   r`   rH   {  s   rH   c                 C   s*   t | }|du rt|n|}t t||S )ab  Return a random *r* length permutation of the elements in *iterable*.

    If *r* is not specified or is ``None``, then *r* defaults to the length of
    *iterable*.

        >>> random_permutation(range(5))  # doctest:+SKIP
        (3, 4, 0, 1, 2)

    This equivalent to taking a random selection from
    ``itertools.permutations(iterable, r)``.

    N)r|   rm   r$   )rg   r   r   r_   r_   r`   rG     s   rG   c                    s8   t |  t }ttt||}t  fdd|D S )zReturn a random *r* length subsequence of the elements in *iterable*.

        >>> random_combination(range(5), 3)  # doctest:+SKIP
        (2, 3, 4)

    This equivalent to taking a random selection from
    ``itertools.combinations(iterable, r)``.

    c                 3       | ]} | V  qd S r\   r_   r   r   r   r_   r`   r     r   z%random_combination.<locals>.<genexpr>)r|   rm   r   r$   r   )rg   r   rf   indicesr_   r   r`   rF     s   
rF   c                    s@   t | t t fddt|D }t fdd|D S )aS  Return a random *r* length subsequence of elements in *iterable*,
    allowing individual elements to be repeated.

        >>> random_combination_with_replacement(range(3), 5) # doctest:+SKIP
        (0, 0, 1, 2, 2)

    This equivalent to taking a random selection from
    ``itertools.combinations_with_replacement(iterable, r)``.

    c                 3   s    | ]}t  V  qd S r\   )r#   r   rf   r_   r`   r     r   z6random_combination_with_replacement.<locals>.<genexpr>c                 3   r   r\   r_   r   r   r_   r`   r     r   )r|   rm   r   r   )rg   r   r   r_   )rf   r   r`   rE     s   rE   c           	      C   s   t | }t|}|dk s||krtd}t||| }td|d D ]}||| |  | }q"|dk r7||7 }|dk s?||krAtg }|ry|| | |d |d }}}||krn||8 }|||  | |d }}||ksY||d|   |sEt |S )a  Equivalent to ``list(combinations(iterable, r))[index]``.

    The subsequences of *iterable* that are of length *r* can be ordered
    lexicographically. :func:`nth_combination` computes the subsequence at
    sort position *index* directly, without computing the previous
    subsequences.

        >>> nth_combination(range(5), 3, 5)
        (0, 3, 4)

    ``ValueError`` will be raised If *r* is negative or greater than the length
    of *iterable*.
    ``IndexError`` will be raised if the given *index* is invalid.
    r   r   r   )r|   rm   r   minr   
IndexErrorr   )	rg   r   r"   r   rf   cr   r   resultr_   r_   r`   r9     s,    r9   c                 C   s   t | g|S )a  Yield *value*, followed by the elements in *iterator*.

        >>> value = '0'
        >>> iterator = ['1', '2', '3']
        >>> list(prepend(value, iterator))
        ['0', '1', '2', '3']

    To prepend multiple values, see :func:`itertools.chain`
    or :func:`value_chain`.

    )r   )valuers   r_   r_   r`   rB     s   rB   c                 c   sb    t |ddd }t|}tdg|d| }t| td|d D ]}|| t||V  q!dS )u}  Discrete linear convolution of two iterables.
    Equivalent to polynomial multiplication.

    For example, multiplying ``(x² -x - 20)`` by ``(x - 3)``
    gives ``(x³ -4x² -17x + 60)``.

        >>> list(convolve([1, -1, -20], [1, -3]))
        [1, -4, -17, 60]

    Examples of popular kinds of kernels:

    * The kernel ``[0.25, 0.25, 0.25, 0.25]`` computes a moving average.
      For image data, this blurs the image and reduces noise.
    * The kernel ``[1/2, 0, -1/2]`` estimates the first derivative of
      a function evaluated at evenly spaced inputs.
    * The kernel ``[1, -2, 1]`` estimates the second derivative of a
      function evaluated at evenly spaced inputs.

    Convolutions are mathematically commutative; however, the inputs are
    evaluated differently.  The signal is consumed lazily and can be
    infinite. The kernel is fully consumed before the calculations begin.

    Supports all numeric types: int, float, complex, Decimal, Fraction.

    References:

    * Article:  https://betterexplained.com/articles/intuitive-convolution/
    * Video by 3Blue1Brown:  https://www.youtube.com/watch?v=KuXjwB4LzSA

    Nr   r   rk   r   )r|   rm   r   r   r   r   _sumprod)signalkernelrf   windowr]   r_   r_   r`   r+     s   #
r+   c                 C   s(   t |\}}tt| |t|}||fS )a  A variant of :func:`takewhile` that allows complete access to the
    remainder of the iterator.

         >>> it = iter('ABCdEfGhI')
         >>> all_upper, remainder = before_and_after(str.isupper, it)
         >>> ''.join(all_upper)
         'ABC'
         >>> ''.join(remainder) # takewhile() would lose the 'd'
         'dEfGhI'

    Note that the first iterator must be fully consumed before the second
    iterator can generate valid results.
    )r   r   r   r   )	predicater   truesafterr_   r_   r`   r)   &  s   r)   c                 C   s:   t | d\}}}t|d t|d t|d t|||S )zReturn overlapping triplets from *iterable*.

    >>> list(triplewise('ABCDE'))
    [('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E')]

    r   Nr   )rg   r   r   t3r_   r_   r`   rU   9  s
   	


rU   c                 C   s6   t | |}t|D ]\}}tt|||d  q	t| S r\   )r   r   rr   r   r   )rg   rf   r   r   rs   r_   r_   r`   _sliding_window_isliceI  s   
r   c                 c   sB    t | }tt||d |d}|D ]}|| t|V  qd S )Nr   rk   )ro   r   r   r   r|   )rg   rf   rs   r   r]   r_   r_   r`   _sliding_window_dequeQ  s   
r   c                 C   sR   |dkr	t | |S |dkrt| |S |dkrt| S |dkr"t| S td| )aY  Return a sliding window of width *n* over *iterable*.

        >>> list(sliding_window(range(6), 4))
        [(0, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 5)]

    If *iterable* has fewer than *n* items, then nothing is yielded:

        >>> list(sliding_window(range(3), 4))
        []

    For a variant with more features, see :func:`windowed`.
          r   zn should be at least one, not )r   r   r<   r   r   r}   r_   r_   r`   rM   Z  s   

rM   c                 C   s4   t | }ttttt|d d}ttt||S )zReturn all contiguous non-empty subslices of *iterable*.

        >>> list(subslices('ABC'))
        [['A'], ['A', 'B'], ['A', 'B', 'C'], ['B'], ['B', 'C'], ['C']]

    This is similar to :func:`substrings`, but emits items in a different
    order.
    r   r   )	re   r   slicer   r   rm   rh   r!   r   )rg   seqslicesr_   r_   r`   rN   s  s   	rN   c                 C   s(   dg}| D ]}t t|d| f}q|S )uk  Compute a polynomial's coefficients from its roots.

    >>> roots = [5, -4, 3]            # (x - 5) * (x + 4) * (x - 3)
    >>> polynomial_from_roots(roots)  # x³ - 4 x² - 17 x + 60
    [1, -4, -17, 60]

    Note that polynomial coefficients are specified in descending power order.

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    r   )re   r+   )rootspolyrootr_   r_   r`   r?     s   r?   c                 c   s    t | dd}|du r(t| ||}t||D ]\}}||u s"||kr%|V  qdS |du r0t| n|}|d }tt 	 |||d | }V  q<1 sKw   Y  dS )a  Yield the index of each place in *iterable* that *value* occurs,
    beginning with index *start* and ending before index *stop*.


    >>> list(iter_index('AABCADEAF', 'A'))
    [0, 1, 4, 7]
    >>> list(iter_index('AABCADEAF', 'A', 1))  # start index is inclusive
    [1, 4, 7]
    >>> list(iter_index('AABCADEAF', 'A', 1, 7))  # stop index is not inclusive
    [1, 4]

    The behavior for non-scalar *values* matches the built-in Python types.

    >>> list(iter_index('ABCDABCD', 'AB'))
    [0, 4]
    >>> list(iter_index([0, 1, 2, 3, 0, 1, 2, 3], [0, 1]))
    []
    >>> list(iter_index([[0, 1], [2, 3], [0, 1], [2, 3]], [0, 1]))
    [0, 2]

    See :func:`locate` for a more general means of finding the indexes
    associated with particular values.

    r"   Nr   )getattrr   r   rm   r   r   )rg   r   rj   stop	seq_indexrs   r   r   r_   r_   r`   r3     s    
r3   c                 c   s    | dkrdV  d}t d| d  }t|d|t| d dD ])}t|d||| E dH  ttt|| | || ||| | || < || }qt|d|E dH  dS )zeYield the primes less than n.

    >>> list(sieve(30))
    [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

    r   r   )r   r   r   )r   N)	bytearrayr3   r   bytesrm   r   )rf   rj   datar   r_   r_   r`   rL     s   
.
rL   c                c   sd    |dk r	t dt| }tt|| }r0|r"t||kr"t d|V  tt|| }sdS dS )a  Batch data into tuples of length *n*. If the number of items in
    *iterable* is not divisible by *n*:
    * The last batch will be shorter if *strict* is ``False``.
    * :exc:`ValueError` will be raised if *strict* is ``True``.

    >>> list(batched('ABCDEFG', 3))
    [('A', 'B', 'C'), ('D', 'E', 'F'), ('G',)]

    On Python 3.13 and above, this is an alias for :func:`itertools.batched`.
    r   zn must be at least onezbatched(): incomplete batchN)r   ro   r|   r   rm   )rg   rf   rZ   rs   batchr_   r_   r`   _batched  s   r   i )r(   c                C   s   t | ||dS )NrY   )itertools_batched)rg   rf   rZ   r_   r_   r`   r(     s   r(   c                 C   s   t |  S )a  Swap the rows and columns of the input matrix.

    >>> list(transpose([(1, 2, 3), (11, 22, 33)]))
    [(1, 11), (2, 22), (3, 33)]

    The caller should ensure that the dimensions of the input are compatible.
    If the input is empty, no output will be produced.
    )_zip_strictr   r_   r_   r`   rT     s   	rT   c                 C   s,   zt |  W n
 ty   Y dS w t| |S )z.Scalars are bytes, strings, and non-iterables.T)ro   rn   
isinstance)r   
stringliker_   r_   r`   
_is_scalar   s   
r   c                 C   sR   t | }	 zt|}W n ty   | Y S w t|f|}t|r#|S t|}q)z.Depth-first iterator over scalars in a tensor.)ro   rr   StopIterationr   r   r{   )tensorrs   r   r_   r_   r`   _flatten_tensor	  s   
r   c                 C   sD   t |trtt| |S |^}}t| }ttt||}t||S )a  Change the shape of a *matrix*.

    If *shape* is an integer, the matrix must be two dimensional
    and the shape is interpreted as the desired number of columns:

        >>> matrix = [(0, 1), (2, 3), (4, 5)]
        >>> cols = 3
        >>> list(reshape(matrix, cols))
        [(0, 1, 2), (3, 4, 5)]

    If *shape* is a tuple (or other iterable), the input matrix can have
    any number of dimensions. It will first be flattened and then rebuilt
    to the desired shape which can also be multidimensional:

        >>> matrix = [(0, 1), (2, 3), (4, 5)]    # Start with a 3 x 2 matrix

        >>> list(reshape(matrix, (2, 3)))        # Make a 2 x 3 matrix
        [(0, 1, 2), (3, 4, 5)]

        >>> list(reshape(matrix, (6,)))          # Make a vector of length six
        [0, 1, 2, 3, 4, 5]

        >>> list(reshape(matrix, (2, 1, 3, 1)))  # Make 2 x 1 x 3 x 1 tensor
        [(((0,), (1,), (2,)),), (((3,), (4,), (5,)),)]

    Each dimension is assumed to be uniform, either all arrays or all scalars.
    Flattening stops when the first value in a dimension is a scalar.
    Scalars are bytes, strings, and non-iterables.
    The reshape iterator stops when the requested shape is complete
    or when the input is exhausted, whichever comes first.

    )	r   intr(   r   r{   r   r	   reversedr   )matrixshape	first_dimdimsscalar_streamreshapedr_   r_   r`   rD     s   
!
rD   c                 C   s&   t |d }tttt| t||S )a#  Multiply two matrices.

    >>> list(matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]))
    [(49, 80), (41, 60)]

    The caller should ensure that the dimensions of the input matrices are
    compatible with each other.

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    r   )rm   r(   r   r   r   rT   )m1m2rf   r_   r_   r`   r5   @  s   r5   c                 C   s   t d| D ]7}d }}d}|dkr4|| | |  }|| | |  }|| | |  }t|| | }|dks|| kr<|  S qtd)Nr   r   zprime or under 5)r   r   r   )rf   r   r]   r^   dr_   r_   r`   _factor_pollardO  s   r     c                 c   s    | dk rdS t D ]}| | s|V  | | } | | rq	g }| dkr$| gng }|D ]} | dk s2t| r8||  q(t| }||| | f7 }q(t|E dH  dS )a  Yield the prime factors of n.

    >>> list(factor(360))
    [2, 2, 2, 3, 3, 5]

    Finds small factors with trial division.  Larger factors are
    either verified as prime with ``is_prime`` or split into
    smaller factors with Pollard's rho algorithm.
    r   Nr   i  )_primes_below_211r1   r   r  r   )rf   primeprimestodofactr_   r_   r`   r.   b  s"   r.   c                 C   s>   t | }|dkrt|dS ttt|tt|}t| |S )a  Evaluate a polynomial at a specific value.

    Computes with better numeric stability than Horner's method.

    Evaluate ``x^3 - 4 * x^2 - 17 * x + 60`` at ``x = 2.5``:

    >>> coefficients = [1, -4, -17, 60]
    >>> x = 2.5
    >>> polynomial_eval(coefficients, x)
    8.125

    Note that polynomial coefficients are specified in descending power order.

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    r   )rm   typerh   powr   r   r   r   )coefficientsr]   rf   powersr_   r_   r`   r>     s
   
r>   c                 C   s   t t|  S )zReturn the sum of the squares of the input values.

    >>> sum_of_squares([10, 20, 30])
    1400

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    )r   r   r   r_   r_   r`   rO     s   rO   c                 C   s&   t | }ttd|}ttt| |S )u  Compute the first derivative of a polynomial.

    Evaluate the derivative of ``x³ - 4 x² - 17 x + 60``:

    >>> coefficients = [1, -4, -17, 60]
    >>> derivative_coefficients = polynomial_derivative(coefficients)
    >>> derivative_coefficients
    [3, -8, -17]

    Note that polynomial coefficients are specified in descending power order.

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    r   )rm   r   r   re   rh   r   )r  rf   r  r_   r_   r`   r@     s   r@   c                 C   s"   t t| D ]}| | | 8 } q| S )u  Return the count of natural numbers up to *n* that are coprime with *n*.

    Euler's totient function φ(n) gives the number of totatives.
    Totative are integers k in the range 1 ≤ k ≤ n such that gcd(n, k) = 1.

    >>> n = 9
    >>> totient(n)
    6

    >>> totatives = [x for x in range(1, n) if gcd(n, x) == 1]
    >>> totatives
    [1, 2, 4, 5, 7, 8]
    >>> len(totatives)
    6

    Reference:  https://en.wikipedia.org/wiki/Euler%27s_totient_function

    )r   r.   )rf   r
  r_   r_   r`   rS     s   rS   ))i  )r   )i )   I   )l   tT7 )r      =   )l   ay)r         iS_ )l   ;n>)r   r      r     )l   p)r   r   r  r  r  r  )l            )r   iE  i$  in  i i= ik)l   %!HnfW )r   r   r  r  r  r        r     r  %   )   c                 C   sH   | d | A   d }| |? }d|> | | kr|d@ r|dks J ||fS )z#Return s, d such that 2**s * d == nr   r   )
bit_length)rf   r   r  r_   r_   r`   _shift_to_odd  s   $r   c                 C   s   | dkr| d@ rd|  kr| k sJ  J t | d \}}t||| }|dks.|| d kr0dS t|d D ]}|| |  }|| d krG dS q6dS )Nr   r   TF)r   r  r   )rf   baser   r  r]   _r_   r_   r`   _strong_probable_prime  s   ,r#  c                    s    dk r dv S  d@ r  d r  d r  d r  d r  d s"d	S t D ]
\}} |k r. nq$ fd
dtdD }t fdd|D S )a  Return ``True`` if *n* is prime and ``False`` otherwise.

    Basic examples:

        >>> is_prime(37)
        True
        >>> is_prime(3 * 13)
        False
        >>> is_prime(18_446_744_073_709_551_557)
        True

    Find the next prime over one billion:

        >>> next(filter(is_prime, count(10**9)))
        1000000007

    Generate random primes up to 200 bits and up to 60 decimal digits:

        >>> from random import seed, randrange, getrandbits
        >>> seed(18675309)

        >>> next(filter(is_prime, map(getrandbits, repeat(200))))
        893303929355758292373272075469392561129886005037663238028407

        >>> next(filter(is_prime, map(randrange, repeat(10**60))))
        269638077304026462407872868003560484232362454342414618963649

    This function is exact for values of *n* below 10**24.  For larger inputs,
    the probabilistic Miller-Rabin primality test has a less than 1 in 2**128
    chance of a false positive.
    r  >   r   r   r  r  r  r  r   r   r  r  r  r  Fc                 3   s    | ]
}t d  d V  qdS )r   r   N)_private_randranger   r   r_   r`   r   *  s    zis_prime.<locals>.<genexpr>@   c                 3   r   r\   )r#  )r   r!  r   r_   r`   r   ,  r   )_perfect_testsr   all)rf   limitbasesr_   r   r`   r1     s   !0r1   c                 C   s
   t d| S )zReturns an iterable with *n* elements for efficient looping.
    Like ``range(n)`` but doesn't create integers.

    >>> i = 0
    >>> for _ in loops(5):
    ...     i += 1
    >>> i
    5

    Nr   r   r_   r_   r`   r4   /  s   
r4   c                  G   s   t ttt| | S )u  Number of distinct arrangements of a multiset.

    The expression ``multinomial(3, 4, 2)`` has several equivalent
    interpretations:

    * In the expansion of ``(a + b + c)⁹``, the coefficient of the
      ``a³b⁴c²`` term is 1260.

    * There are 1260 distinct ways to arrange 9 balls consisting of 3 reds, 4
      greens, and 2 blues.

    * There are 1260 unique ways to place 9 distinct objects into three bins
      with sizes 3, 4, and 2.

    The :func:`multinomial` function computes the length of
    :func:`distinct_permutations`.  For example, there are 83,160 distinct
    anagrams of the word "abracadabra":

        >>> from more_itertools import distinct_permutations, ilen
        >>> ilen(distinct_permutations('abracadabra'))
        83160

    This can be computed directly from the letter counts, 5a 2b 2r 1c 1d:

        >>> from collections import Counter
        >>> list(Counter('abracadabra').values())
        [5, 2, 2, 1, 1]
        >>> multinomial(5, 2, 2, 1, 1)
        83160

    A binomial coefficient is a special case of multinomial where there are
    only two categories.  For example, the number of ways to arrange 12 balls
    with 5 reds and 7 blues is ``multinomial(5, 7)`` or ``math.comb(12, 5)``.

    Likewise, factorial is a special case of multinomial where
    the multiplicities are all just 1 so that
    ``multinomial(1, 1, 1, 1, 1, 1, 1) == math.factorial(7)``.

    Reference:  https://en.wikipedia.org/wiki/Multinomial_theorem

    )r   rh   r   r   )countsr_   r_   r`   r6   =  s   *r6   c                 c   sv    | j }g }g }tt% 	 t|t||  |d V  t|t||  |d |d  d V  q1 s4w   Y  dS )z.Non-windowed running_median() for Python 3.14+Tr   r   N)__next__r   r   rb   r   r
   rc   rs   readlohir_   r_   r`   #_running_median_minheap_and_maxheapj  s   

r0  c                 c   s~    | j }g }g }tt) 	 t|t||   |d  V  t|t||    |d |d  d V  q1 s8w   Y  dS )zDBackport of non-windowed running_median() for Python 3.13 and prior.Tr   r   N)r+  r   r   r
   r   r,  r_   r_   r`   _running_median_minheap_onlyz  s   
r1  c                 c   s    t  }g }| D ]9}|| t|| t||kr$t|| }||= t|}|d }|d@ r4|| n||d  ||  d V  qdS )z+Yield median of values in a sliding window.r   r   N)r   r   r   rm   r   popleft)rs   rl   r   orderedr]   r   rf   mr_   r_   r`   _running_median_windowed  s   

,r5  rk   c                C   sF   t | }|durt|}|dkrtdt||S tst|S t|S )aD  Cumulative median of values seen so far or values in a sliding window.

    Set *maxlen* to a positive integer to specify the maximum size
    of the sliding window.  The default of *None* is equivalent to
    an unbounded window.

    For example:

        >>> list(running_median([5.0, 9.0, 4.0, 12.0, 8.0, 9.0]))
        [5.0, 7.0, 5.0, 7.0, 8.0, 8.5]
        >>> list(running_median([5.0, 9.0, 4.0, 12.0, 8.0, 9.0], maxlen=3))
        [5.0, 7.0, 5.0, 9.0, 8.0, 9.0]

    Supports numeric types such as int, float, Decimal, and Fraction,
    but not complex numbers which are unorderable.

    On version Python 3.13 and prior, max-heaps are simulated with
    negative values. The negation causes Decimal inputs to apply context
    rounding, making the results slightly different than that obtained
    by statistics.median().
    Nr   zWindow size should be positive)ro   r"   r   r5  _max_heap_availabler1  r0  )rg   rl   rs   r_   r_   r`   rK     s   
rK   )r   r\   )r   N)NF)NN)r   N)__doc__randombisectr   r   collectionsr   
contextlibr   	functoolsr   r   r	   heapqr
   r   	itertoolsr   r   r   r   r   r   r   r   r   r   r   r   r   r   mathr   r   r   r   operatorr   r   r    r!   r"   r#   r$   r%   sysr&   __all__objectr   r   rn   r   r[   r   ImportErrorrb   rc   r6  rR   rP   rQ   r*   r8   r'   r   rC   r;   r:   r7   r,   r/   rI   r   r<   r   r   r   r   r   r0   rJ   r=   rA   rW   rX   rV   r2   r-   rH   rG   rF   rE   r9   rB   r+   r)   rU   r   r   rM   rN   r?   r3   rL   r   r(   r   rT   strr   r   r   rD   r5   r  r|   r	  r.   r>   rO   r@   rS   r&  r   r#  Randomr$  r1   r4   r6   r0  r1  r5  rK   r_   r_   r_   r`   <module>   s    
@5


(




(

-



*+	
)

	)!

0-